
..

Reuse of a Formal Model for Requirements Validation

February 28, 1997

Abstract

This paper reports experience from how a project engaged in the process of require-
ments analysis for evolutionary builds can reuse the formally specified design model
produced for a similar, earlier project in the same domain. Two levels of reuse are
described here. First, a formally specified generic design model was generated on one
project to systematically capture the design commonality in a set of software mon-
itors onboard a spacecraft. Monitors are software that periodically check for faults
and invoke recovery software when needed. The monitors are safety-critical in that
they detect in-flight faults that may require autonomous reco~~ery on board spacecraft.
The paper summarizes the use of the design model to validate the software design
of the various monitors on that first project. Secondly, the paper describes how the

* formal design model created for the first project was reused on a second, subsequent
project. The model was reused to validate the evolutionary requirements for the second
project’s software monitors, which were being developed in a series of builds. Some mis-
matches due to the very different architectures on the two projects suggested changes
to make the model more generic, In addition, several advantages to the reuse of the
first project’s formal model on the second project are reported, The reuse (1) helped
validate the completeness and reasonableness of the requirements in the current build;
(2) clarified the allocation of requirements to software elements; (3) provided a struc-
tured way to capture design constraints and design assumptions during requirements
analysis; and (4) identified some requirements that needed to be added in subsequent
builds.

1. Introduction

In some application domains, successive software projects tackle many of the same problems.
In such applications, software design from prior projects in the same domain or product
family is sometimes used to guide the requirements for a current project. At the informal
level this occurs when ‘(Lessons Learned” on earlier projects are collected and considered
during the requirements phase of a subsequent project, In other cases, reuse of existing
software components or design patterns from a previous project may be mandated on a new
project, with the reuse sometimes driving the requirements [19].

This paper investigates how a project engaged in the process of requirements analysis
can exploit the formal design modeling and analysis done on a similar past project in the
same application domain. The approach is outlined in Figure 1.

1

.“

Project 1:

Design
issues

‘rOjec’w”’”’””””’”””’”’”””””’’’’””””
. .

requirements I

Figure 1: Reuse of Project 1‘s Formally Specified Design Model for Requirements Validation
on Project 2

The paper describes two applications of reuse. (1) A formally specified design model was
generated on Project 1 to systematically capture the design commonality in eighteen software
monitors. This generic model was then reused to validate the software design of each of the
eighteen monitors, (2) The formal model created for Project 1 was subsequently reused to
analyze the requirements for similar soft ware (i.e., fault monitors) on a second project in the
same application domain, Each element (data item or function) of the generic formal model
produced for Project 1 was either traced to the requirements for the monitors in Project
2 or the discrepant element was noted and investigated, In addition to the anticipated
benefit of validating requirements in the current build of Project 2, the work also clarified
the allocation of requirements among the software elements, provided a structured way to
capture design constraints and design assumptions during requirements analysis, and guided
the identification of requirements to be added in later builds during the evolutionary software
development process.

The need for rapid, low-cost requirements analysis and the planned, steady evolution
of requirements on the new project motivated the reuse of the earlier design model. The
goal was to import some of the lessons learned about system-level fault protection monitor
design on the earlier project into the subsequent project in a structured but informal way.
The results show that, although the software architectures and the development processes for
the two systems are very different (see Section 4), the design model from the earlier project
provided some guidance for validating a specific build’s requirements and identifying future
builds’ requirements in the second project. By tracing each element of the earlier formal

2

I

design model tothepreliminary requirements forthelater system, additional insights into
the assumptions underlying the requirements, the design constraints of the new system, and
the criteria for design choices were gained.

The assumption underlying the experimental reuse of the first project’s formal model on
the second project’s requirements is that similar behavior and similar data must occur in
each monitor in this domain. This assumption turned out to be largely true, The data items
and functions in the formal specification can often be mapped directly to a data or behavioral
requirement in the second project’s monitors, adding assurance that the requirements are
adequate. This mirrored the experience applying the generic formal model to the eighteen
monitors in the first project, In that case, flagging deviations of particular monitors from
the norm (i.e., the generic model) was a quick way to identify areas of concern for additional
analysis or testing. Similarly, identification of instances in which the second project’s mon-
itors deviated from the first project’s generic formal model provided insights into currently
missing requirements (to be required in later builds) and into implied design constraints,

Both projects involved fault-monitoring software in the same domain. Project 1 is the
Cassini spacecraft, set for an October, 1997 launch to Saturn and its moon, Titan. Project
2 is the Deep Space-1 (DS-1) spacecraft, which will be launched in 1998 to rendezvous with
an asteroid and a comet [5]. The software described here was, on both projects, the system-
level fault-protection monitoring software. In the spacecraft domain, a monitor is software
that periodically checks for malfunctions and initiates a process leading to recovery when
appropriate, The monitors are the “eyes and ears” of the spacecraft [14].

In both projects the software monitors are required to display similar behavior (e.g.
ignoring transient faults) and to use similar data (e.g., fault thresholds against which the
input data is measured to determine if a fault exists), A fault is given here the standard
definition of being either “a defect in a hardware device or component” or “an incorrect step,
process, or data definition in a computer program” [8] Monitors are safety-critical software in
that they must autonomously detect onboard threats to the spacecraft’s health and mission.
Since fault monitoring software in other applications’ control systems frequently displays
many of the same behavior and data dependencies represented in the formal model here, the
approach described in this paper may have application beyond the spacecraft domain.

The rest of the paper is organized as follows. Section 2 describes the formal specification
and analysis of the generic model. Section 3 summarizes the results from its use on the
first project, Section 4 surveys some relevant commonalities and differences between the
two projects in terms of their software development processes (waterfall vs. spiral) and
their architecture (centralized vs. remote agents). Section 5 describes the results from the
application of the design model to the requirements analysis of the software builds on the
second project. Section 6 briefly discusses related work and future directions. Section 7
summarizes the lessons learned from the experience reported here.

2. The Formal Model

In previous work we used two technologies, formal methods and object-oriented modeling,
to analyze the software design for portions of the Cassini spacecraft’s software [1, 11]. The
two tools that were used were OMT, the Object Modeling Technique [16], and PVS, the

3

.“

.cti*-~:.@..@:s,

Figure 2:

Prototype Verification System tool (SRI).
and analyzing formal specifications using

Dynamic Model

PVS is an integrated environment for developing
support tools and a theorem prover [17]. These

tools allowed the modeling, formal specification, and analysis of the monitors’ design in the
Cassini system-level fault protection software [10].

There are eighteen monitors in the system-level fault protection onboard the Cassini
spacecraft, Eight of these are overtemperature monitors that are nearly identical in their
logic. The other ten fault monitors detect loss of commendability (uplink), loss of telemetry
(downlink), heartbeat loss (i.e, communication between computers), overpressure, overtem-
perature, undervoltage, and selected other failures.

These monitors share many of the same functions and attributes. One of the roles of
the OMT models in the design analysis was to explicitly represent these common features
in a way that could be readily reviewed by the Cassini engineers. This approach worked
well, The OMT approach provides three viewpoints from which to represent the software
design, The design of the fault protection monitor was thus represented in three OMT design
diagrams [10]:

●

●

●

The object-oriented design approach was represented in a object diagram. At the de-
sign phase, the object model of the monitor provided insight into the common behavior,
properties, and relationships that the various monitors share. The OMT diagrams al-
lowed the similarities in the monitors to be compactly represented.

The functional viewpoint was represented in a data flow diagram. The data flow dia-
gram characterized the data and data transformations common to all Cassini system-
level fault protection monitors.

The dynamic viewpoint was represented in a state diagram (Fig. 2). The state diagram
for the design contained a sequence of six states that an active monitor can reach.
Monitors commonly (1) test the validity of the input measurements that they receive
from the sensors, (2) detect the existence of a fault condition in the various input data,

4

X Generic Cassini System-Level Fault Protection Monitor
% Monitor requests recovery response.

request - response (i , x , threshold , low-f i l ter , high_filter, e n a b l e d ,
prev-persist-ctr, persist-limit, s e n s o r - i n p u t) : bool =

I F v a l i d - d a t a - e x i s t s (i, l o w - f i l t e r , high-filter)

A N D cond-exists (i, x, threshold, l o w - f i l t e r ,
h i g h - f i l t e r , s e n s o r - i n p u t)

A N D cond-persists (i, x , t h r e s h o l d , l o w - f i l t e r ,
h i g h - f i l t e r , prev-persist-ctr, p e r s i s t - l i m i t ,
sensor.input)

AND enabled
THEN TRUE

ELSE FALSE
ENDIF

Figure3: Excerpt

(3) decide whether a fault condition

from the Formal Model

in fact exists (perhaps by voting), (4) disregard
transient anomalies, (5) determinewhether arecove;y response is appropriate, an~ (6)
update state data, including possibly a request for a recovery response.

The formal specification in PVS of the design for the monitor software drew on the OMT
diagrams to guide the formal specification ofthe design model. This was consistent withour
earlier experience that creating OMT diagrams prior to formally specifying the requirements
enhanced the accuracy of the initial formal specifications and reduced the effort requiredto
produce them [11]. The formals pacification in PVSofthe design for the monitor consists
of two theories (five pages of typechecked PVS specifications). The first theory, called men,
specifies the design of a system-level fault protection monitor (Fig. 3). Voting behavior
(among inputs on whether a fault exists) was not represented in the formal model, although
it later proved to be a desirable addition. The second theory, called monlem, states seven
lemmas that specify the monitor’s behavior, The seven lemmas were proven, several by
Martin Feather. As an example, alemma was proven stating that aresponse is requested
by a monitor only if the detected fault is a persistent (i.e., non-transient) fault.

The conformityof the OMT representation and the formal specifications to the actual,
final software design was checked against the eighteen system-level fault protection moni-
tors in the post-Critical Design Review document [2, 6]. One step in evaluating that the
model accurately represented the design was to classify the Data Lists provided in [6] for
each of the monitors, and then to map those data classifications to the model. Toward this
goal, the 162 data items inthe Fatalists were classified into eight categories. In descend-
ing order of frequency, the eight categories were: Measurements (input data from sensors),
Enabled/Disabled flags (monitors can be disabled), Thresholds (limits beyond which a fault
condition exists), Filters (persistence requirements so that transient faults are ignored), State
Updates (e.g., “high-water”- the highest measurement seen to date), Validity ranges (mea-

5

$urements outside these ranges are assumed to be from failed sensors), Heartbeat/Messages
(from other software), and State Currently Commanded (information about the current con-
figuration). The eight categories of data found in the document were reflected in the OMT
design model and the formal specifications.

3. Reuse of the Formal Model on Project 1

The design analysis involved in constructing the model, in formally specifying the design of
the monitor, in stating and proving the lemmas, and in confirming the accuracy of the model
and specifications, identified eight deviations of Project 1‘s individual fault monitors from
the formal specification of the generic design. Four of the eight discrepancies were found
through the design analysis needed to develop the formally specified generic model. The
other four of the eight discrepancies were found by comparing the Data Lists for each of the
eighteen fault monitors with the data in the formal specification, None of these discrepancies
involved erroneous design logic, but rather unnecessary coupling of software modules, unique
disabling logic, or inconsistent documentation practices. All were reported to the project,
but none changed the design in any significant way.

The key benefit of abstracting from the documentation of individual monitors to model
and formally specify the design of a general-purpose monitor in this study was to support
design analysis. Flagging the design deviations of specific monitors from the general pattern
was useful to the design verification process. These deviations are more likely to be design
errors, more likely to be implemented incorrectly (because they are exceptions to the norm),
and more likely to be overlooked in the selection of test cases than other software, For
example, Software FMEA’s (Failure Modes and Effects Analyses) that were being performed
at the same time on the Cassini system-level fault protection software incorporated the design
deviations found via the formal methods analysis into the SFMEA process [12].

4. Similarities and Differences in the Two Projects

The fault monitoring software on the two spacecraft have much in common. In both systems
the fault protection software is divided into software monitors, that detect when a fault
condition exists, and software responses, that take autonomous action to command the
spacecraft to a known safe state.

Despite the similarities in the responsibilities of the fault monitors in the two systems,
there are major differences in both the software architectures and in the development pro-
cesses. System-level fault protection on Cassini is managed by a Fault Protection Executive
that runs in a separate virtual machine. This is consistent with the basic fault protection
design of prior spacecraft from which Cassini inherited portions of its fault-protection archi-
tecture, DS-1, currently under development, instead uses an innovative architecture based
on recent advances in remote agent software, artificial intelligence, and robotics to monitor
and recover from faults,

The software development process on Cassini is essentially a waterfall software develop-
ment process tailored to the needs and constraints of the overall system development, The

6

.

soft ware development process on DS- 1 uses an evolutionary model, similar to the spiral pro-
cess model, with rapid development of an initial system and three subsequent builds to add
incremental functionality. The requirements for a next build are derived in large part from
the testing of the previous build, Consequently, the distinction between requirements and
design is blurred. Risk identification during testing, and risk resolution during the definition
of the next build’s goals and constraints, drive the evolution of the requirements.

This evolutionary development of requirements, together with the shift from a familiar to
a relatively new spacecraft architecture, motivated the decision to reuse the Cassini design
model, Concerns with requirements completeness and consistency for each build’s baseline
could be addressed in part by reference to the previous project’s formally specified generic
model,

On DS-1, two monitors have been established as C++ classes which can be reused by
various subsystems [3, 13, 14, 15], The two monitors are a Threshold Monitor, which closely
parallels the functionality of the generic Cassini monitor in detecting when a persistent fault
occurred, and a Transaction Monitor, which reports on the status of a transaction (e.g, the
successful or failed attempt to take a picture), On Cassini the generic monitor model was
created strictly for independent design validation; on DS- 1 the monitor class is incorporated
directly into the implementation. The two DS- 1 monitors are specified by means of state
transition diagrams, supplemented by descriptions of the data. It is these specifications of
monitors to which the Cassini design model was mapped.

One difficulty in mapping the generic formal model to DS-1’S requirements was that the
states in DS- 1‘s monitors represent the soft ware’s knowledge of the hardware device it is
monitoring, whereas the states in Cassini’s monitors represent the monitor’s own state of
execution, This difference complicated the mapping since the same condition may lead to
different states in the two systems. For example, on Cassini when the predicate “sensor
surpasses threshold” becomes true, the software changes state from “Determine if fault indi-
cated” to ‘{Test for fault persistence. ” In DS- 1 the same predicate causes the state to change
from, e.g., the nominal state (“Looks-OK”) to the state indicating that a fault may exist.

5. Reuse of the Formal Model on Project 2

Nine threshold monitors and seven transaction monitors are included in a recent, interme-
diate build of DS-1 [14, 15], An early estimate was that there will be at least thirty monitor
instances in the final launch code [4]. In addition, aggregate monitors will be composed from
several Threshold Monitors.

The formal specification in PVS of the generic design model of the Cassini system-level
fault protection monitors was used to build two tables in which each element of the formal
generic model (data and functions) was traced to the current DS-1 build’s requirements for
the Threshold and Transaction Monitors.

The tables list nineteen elements of the design model (the external inputs to the monitor,
the prior state inputs and next state outputs, the external outputs, and the functions). Some
simple data items and functions needed only for correct PVS specification or to simplify
proofs (e.g., a variable that specifies the ordinal number of an input within a set), but that
were not present in the OMT models, are excluded from the tables. Figure 4 shows an

7

.“

~ Data Item in Formal Specification persistlimit
Data Type in Formal Specification nat
Explanation Fault must persist for a specified duration
Cassini Design Rationale/Assumptions Transient faults should be ignored
Data Item in DS-1 Transaction Monitor S. Persistence
Data Item in DS-1 Threshold Monitor S. Persistence
DS-1 Build in which Implemented, &/or Build x
Rationale for Inclusion/Exclusion

Figure 4: Reuse of Formal Model for Requirements Validation of Data

r Function Name in Formal Specification cond.persists
Cassini Design Rationale/Assumptions Ignores transient fault condition
Function in DS-1 Transaction Monitor S. Count >= S. Persistence
Function in DS-1 Theshold Monitor S. Count > S. Persistence
DS-1 Build in which Implemented &/or Build y; note that difference in trigger
Rationale for Inclusion/Exclusion mechanism reflects individual requirements

of the two monitors on DS-1

Figure 5: Reuse of Formal Model for Requirements Validation of Functions

example from the Data Table of the input data item, “persistencedimit”. Figure 5 shows a
sample function, ‘{condition-persists’).

Those elements that are present in the Cassini design model but are neither in a current
DS- 1 build nor have a clear rationale for being excluded are candidates for software require-
ments for future DS-1 builds, On the other hand, because the monitors in DS-1 have less
spacecraft redundancy to manage, some data and behavior present in Cassini monitors are
not required on DS- 1. For example, the DS- 1 monitors do not receive redundant sensor data,
so do not, need & %urn-sensors” data item present in the Cassini design model.

The issues that arose during the development and inspection of the tables were of the
following types:

1,

2.

Evolutionary requirements. The tables were most useful in identifying some require-
ments that needed to be added in later builds. The tables allowed the current status of
the requirements to be tracked against the generic design model for similar software.
The tables thus serve as a partial checklist against which the evolving requirements
can be measured. The tables also allow some possible requirements for future builds
to be inferred. For example, the collection of data required for ground diagnosis of
the monitor’s state was explicitly deferred to a later build (e.g., the collection by the
Threshold Monitors of the highest and lowest values that each monitor ever sees for
downlinked telemetry.) The tables capture this intent for later builds’ requirements.

Validation of requirements in the current build. Instances in which the DS-1 monitors
were not required to exhibit behaviors that were present in the generic model were fed
back to the project for confirmation. In most cases investigation yielded a rationale for

8

. .

3.

4,

the exclusion and a better understanding of the spacecraft interfaces. In a few cases
deviations of aDS-1 monitor from thegeneric model ledto continued discussions of
some requirements decisions.

Clarifications of requirements allocation.. Given DS-1’S innovative architecture and
increased autonomy, there is an ongoing focus by the project on providing clean in-
terfaces among software components and on avoiding the possibility that requirements
drop through the cracks. The process of systematically either mapping each element
of Cassini’s design model elements to DS-1’s monitors or of documenting why that
element was not needed in DS-1 assists in this effort, The production of the ta-
bles prompted several questions about requirements allocation that crossed subsystem
boundaries, leading to useful clarification by project personnel. Examples are where
validity checks and noise filtering on input data are performed (externally or internally
to the monitor); how outdated sensor inputs are handled; and where and under what
conditions various data items should be reinitialized (e.g. should one good” reading
reset the fault counter to zero?).

Design constrainis/raiiona/es. The tables which trace Cassini’s generic formal model
of the fault monitor to DS - 1‘s requirements for the monitors document both the ra-
tionale and assumptions m a,de hy Cassini in adopting their design, and the reason for
deviations of DS-1’s requirements from that baseline. For example, on Cassini there
was a design decision to allow monitors to remain enabled but to disable their output
under some circumstances. The table notes that this distinction has no meaning for
DS- 1, where the design is constrained to handle monitors as subsystem function calls.

Initially an effort was made to trace each element in the OMT diagrams to the DS-
1 monitors. This was useful for better understanding the DS-1 monitors, especially with
regard to requirements allocation. However, the subsequent tracing of the PVS elements to
the DS-1 monitors subsumed this earlier work. Moreover, the imprecision and repetition in
the OMT diagrams was removed by focusing on the PVS specifications. The tracing of the
OMT diagrams to the DS-1 monitors is thus omitted here.

6. Discussion

The discussion up to this point has primarily described the reuse of the formally
generic model from the first project on the requirements validation of the second

specified
project’s

fault monitors, This effort at reuse was also instructive for validating the formal model itself.
There were, for example, data items in DS-1’s monitors that did not appear in the generic

design model, namely dual upper and lower thresholds for detecting fault conditions, On
Cassini only one threshold was tested in any single monitor-e. g., overpressure and under-
pressure would be tested in separate monitors since different responses would be triggered.
However, the deviation of the DS-1 Threshold Monitor from this pattern was a reminder
that any extension of this generic design monitor to other applications should also handle a
design decision to test dual thresholds in a single monitor.

Similarly, although the value of the fault persistence counter in Cassini never exceeds
the value of the persistence limit, in DS-1’s Transaction Monitor the counter can increase

9

.

beyond this limit. Again, any further generalization of the generic design monitor should
take this possibility into account, Most interesting is the inclusion in the DS-1 monitors of
a confidence level, a number against which the number of successful or non-failed iterations
of the monitor is compared. Too few successful iterations lead the monitor to report that it
knows too little to accurately report the situation, i.e., the status is “unknown” [15].

Several of these mismatches between the second project’s requirements and the model
could be resolved by revisions or extensions to the formal model, Such work is currently
underway by others in anticipation of reuse on subsequent projects,

Other mismatches are not readily resolvable due to the very different architectures on the
two projects, For example, the second project’s transaction monitors must report all changes,
good or bad, rather than just faults, due to the increased on-board state modeling required
by the remote agents. The formal model did a better job of validating the requirements for
the Threshold Monitor on DS-1 than the Transaction Monitor on DS-1, since the Threshold
Monitor’s requirements were closer to the behavior of the Cassini monitors. This suggests
that a set of generic models of fault monitors, rather than the single monolithic model
developed for Cassini, may be needed if the generic model is to be reused for design (rather
than requirements) validation,

Despite these limitations, the reuse of the formal model performed well in providing an
early reasonableness check of the requirements for the second project,’s monitors. At, the
fairly high level of abstraction in the model, a high degree of correspondence between the
required behaviors or responsibilities of the two project’s monitors, and between the data
they need to do their jobs, was evident. Required functionalist y currently deferred to later
builds in the second project became evident and could be made explicit in the tables.

Architectural differences, which will lead to very different implementations of the fault
monitors on the two spacecraft are, for the most part, masked at the model’s high level of ab-
straction, A more detailed formal model would be less appropriate for reuse in requirements
validation of the second project.

Of the seven lemmas that were formally specified and proved in PVS for the Cassini
generic design model, five involved the validity of the input data used for the control decision
of whether to request a recovery response. All five of the properties specified in these
lemmas (e.g., “The valid data from a sensor is within the range low-filter to high-filter”) are
required behavior of the lower-level ‘leflex” or fault detection behavior incorporated into
each component in DS- 1. One of the remaining two lemmas (“A response is requested by
a monitor only if the detected fault is not a transient fault”) describes required behavior
of the Threshold and Transaction Monitors. The other lemma (“If a fault is not detected
by a monitor, then the ynonitor doesn’t request a response”) describes required behavior of
the Threshold Monitor but not of the Transaction Monitor. This is because the Transaction
Monitor reports any change in status, including the first successful transaction after a string
of failed transactions,

Recent work in design patterns contains much in common with the process of defining
and reusing the generic model described in this paper. Both approaches emphasize the
specification of ‘{the core of a solution to a recurring problem” [9]. However, the use of the
generic model differs in three significant ways form the use of design patterns.

First, the reuse of the generic model provided a mechanism for requirements validation
rather than a design mechanism. The formally specified and validation components of the

10

●

✎✌

generic model were traced to the components of the second project to check for gaps in
functionality, robustness, and environmental assumptions. Thegeneric model thus provided
a reasonableness check on requirements rather than a design pattern for the new project’s
soft ware.

Secondly, there is a difference in intent. The generic model was initially built to solve a
practical problem on a specific project with no intent of reuse on subsequent projects. The
motivation for reuse came later with the need to rapidly and at low cost analyze the second
project’s requirements for similar software.

Lastly, design patterns are usually tightly linked to an architectural model. In contrast,
one of the interesting features of the reuse of the generic model is that the second project
had a significantly different architecture (remote agents) from the first project (centralized
control), This is discussed in more detail in Section 4.

Future work on generic monitors may involve identifying and specifying one or more
multimission fault protection monitor for use in future spacecraft development. Since moni-
toring software similar to that on the spacecraft is part of many other safety-critical control
systems, the monitor is also being investigated as a possible design pattern [18]. Possible
benefits of such an effort include:

●

●

●

●

Reducing design complexity. The specification of a generic design supports functional
abstraction by identifying shared properties, It supports data abstraction by identify-
ing the common objects and classes, and operations on them. By organizing similiar
objects into classes and similar classes into superclasses, a generic design can help
uncover underlying similarities and promote generalization and inheritance of shared
attributes. In general, a common design specification keeps the internal logic of the
individual modules as simple and general-purpose as possible.

Encouraging gradual design refinement, Use of a generic design may encourage hier-
archical design development (successive refinement). For example> some monitors vote
on whether a fault exists, but the voting strategy (2 of 3, etc.) varies among the mon-
itors. Design updates often change the voting strategy in a particular monitor. With
a generic design the details of the different voting strategies can be cleanly deferred to
the detailed design stage of each monitor.

Tracking and evaluating design changes. The existence of a model and formal specifica-
tion may allow more rapid response to proposed design changes by keeping the program
structure evident. This might help avoid ‘tdesign recovery” problems in re-engineering
existing software,

Reducing test time by reducing coupling and increasing cohesion. General-purpose
designs keeps the interfaces simple and the interdependence among modules minimal.
The attention paid to abstraction creates more tightly bound modules with a clear
sequence of tasks.

11

. .

. .
.

7. Conclusion

Formally modeling and analyzing the design of a generic fault protection monitor articulated
the many commonalities among the data and functions of the eighteen Cassini software
monitors. Having a formally specified design of a general-purpose fault protection monitor
then allowed the occasional design deviations of individual monitors from the general pattern
to be readily flagged for further analysis. This was useful because the discrepancies (1) may
be design errors, (2) may need additional documentation of their design rationale (to preserve
project awareness of their uniqueness), and (3) may require special attention during testing
(since erroneous implementation of these exceptions from the pattern is easy).

The formally specified design model provided a baseline against which to measure the
completeness of the requirements for similar fault-monitoring software on DS- 1. Tracing
data items and functions in the PVS design model to the requirements for the monitors
in the second project helped (1) validate requirements in the current build, (2) identify
requirements for future builds, (3) clarify the allocation of requirements among software
components, and (4) document possible design rationales and constraints,

Acknowledgments

The author thanks Judy Crow, Martin Feather, Sarah Gavit, John Kelly, and Nicolas Rou-
quette for their valuable suggestions. The work described in this paper was carried out at
the .Jet Propulsion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by tradename,
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by
the United States Government or the Jet Propulsion Laboratory, California Institute of
Technology.

References

[1]

[2]

[3]

[4)

[5]

Y. Ampo and R. Lutz, “Evaluation of Software Safety Analysis Using Formal Meth-
ods”, Workshop for Foundation of Software Engineering (FOSE), Hamana-Ko, Japan,
Dee, 1995.

Cassini System Fault Protection Final Design Review, Jet Propulsion Laboratory,
Pasadena, CA, June, 1995.

D. Dvorak, N. Rouquette, Q. Vu, “Monitors: How To Design, Build, Test,” JPL
internal posting, August, 1996.

L. Fesq and D, Bernard, “DS-l Fault Protection,” “m New Millenium Interim Design
Concurrence DS1 Autonomy/FSW, ” June, 1996.

L, Fesq, A. Aljabri, C. Anderson, R, Connerton, R. Doyle, M. Hoffman, and G. Man,
“Spacecraft Autonomy in the New Millennium,” Proceedings of the 19th A AS Guid-

12

. .

9..

,

,

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

.

ante and Control Conference, Advances in the Astronautical Sciences, ed. R. D. Culp,
Breckinridge, CO, February, 1996.

Ca.ssini Orbiter Functional Requirements Book, System Fault Protection Algorithms,
CAS-3-331, Jet Propulsion Laboratory, June 7, 1995.

E. Gamma, R, Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Sofiware, Addison-Wesley, 1995.

IEEE Standard Glossary of Software Engineering Terminology (1990), IEEE Std
610.12-1990. New York: IEEE.

N. Islam and M. Devarakonda, “An Essential Design Pattern for Fault-Tolerant Dis-
tributed State Sharing,” CA CM, Special Issue on Software Patterns, vol. 39, no. 10,
October, 1996, pp. 65-71,

R. Lutz, “Design Analysis of Cassini Fault-Protection Montiors Using Formal Meth-
ods,” JPL Document D-13431, May 1, 1996.

R. Lutz and Y. Ampo, “Experience Report: Using Formal Methods for Requirements
Analysis of Critical Spacecraft Software,” Proceedings of the 19ih Annual Software En-
gineering Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, December,
1994, pp. 231-248.

R. Lutz and R. Woodhouse, “Requirements Analysis Using Forward and Backward
Search,” Annals of Software Engineering, Special Volume on Requirements Engineer-
ing, forthcoming, 1997.

“Mode Identification, Reconfiguration, and Monitoring: Problem Statement ,“ JPL
internal posting.

N. Rouquette, JPL internal posting.

N, Rouquette, “R2S3 Monitors Design Review,” July, 1996, JPL internal document.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented
Modeling and Design, Prentice Hall, 1991.

N. Shankar, S. Owre, and J. M. Rushby, The PVS Speci&cation and Verification Sys-
tem, SRI, March, 1993.

A. Shiflet, “Draft: MonitorReport Pattern,” JPL internal document, July 24, 1996.

Software Productivity Consortium, Reuse-Driven Sojtware Processes Guz’debook, SPC-
92019-CMC, v. 02.00.03, November 1993.

13

